#### General announcements

# Summing up the important equations:

*From yesterday's* spring/mass derivation, we found:

*The position function* for an object undergoing simple harmonic motion is a sine/cosine function in the form of  $x = Acos(\omega t + \phi)$  where A = amplitude of oscillation (unit meters),  $\omega =$  angular frequency (rad/sec), and  $\phi =$  phase shift to get the amplitude we want at t = 0

*The maximum velocity* is found at equilibrium (when x = 0) and can be found by  $v_{max} = \omega A$ , and the maximum acceleration is found at the extremes (max amplitudes) and will have a magnitude equal to  $a_{max} = \omega^2 A$ 

The angular frequency  $\omega$  can be related to the frequency v by the expression  $\omega = 2\pi v$ . (For a spring system, this can also be related to the mass m being oscillated and the spring constant k by the relationship  $\omega = \sqrt{k/m}$ .)

And finally, the period T in seconds can be found by  $T = \frac{1}{v}$ 

Looking for patterns...



# Looking for patterns...



#### Energy in a Simple Harmonic Oscillation

At extremes where the velocity is zero, all the energy is **potential**, and we know  $U_{spring} = \frac{1}{2}kx^2$ 

So at 
$$x = +/-A$$
,  $U_{spring} = \frac{1}{2} kA^2$ 

At equilibrium, x = 0 so there is no potential energy and all the energy is kinetic, and the object is moving at maximum v.

So at 
$$x = 0$$
,  $KE = \frac{1}{2}mv_{max}^2 = \frac{1}{2}m(\omega A)^2$ 

*Conservation of energy* tells us that U + K at any point must be constant. Therefore, at any intermediate point:

$$E_{tot} = \frac{1}{2}kA^2 = \frac{1}{2}mv_{max}^2 = \frac{1}{2}kx^2 + \frac{1}{2}mv^2$$

#### A Problem...(13.28)

*Consider* a position function  $x(t) = (0.052 m) \sin(8\pi t)$ 

a.) What is the frequency?

The angular frequency is  $\omega = 8\pi \ rad/sec$ . Therefore we can find the frequency by  $v = \omega/_{2\pi} = \frac{8\pi}{2\pi} = 4 \ Hz$ 

b.) What is the period?

Period is the inverse of frequency, so  $T = \frac{1}{v} = \frac{1}{4 \text{ Hz}} = 0.25 \text{ s}$ 

c.) What is the amplitude?

The amplitude is 0.052 m (the A term in the equation)

d.) When will it reach x = 0.026 meters?

```
0.026 m = (0.052 m) \sin(8\pi t)

0.5 = \sin(8\pi t)

sin^{-1}(0.5) = 8\pi t

t = 0.021 s
```

A spring/mass problem (13.1)

When a 60 kg mass is attached to a spring with a spring constant of 130 N/m, it is elongated a distance 0.13 meters from its equilibrium position.



a.) What is the force on the mass in this position?

$$F_{spring} = -kx = -\left(130\frac{N}{m}\right)(0.13) = -16.9 N$$

b.) What is the acceleration of the mass at this point?

$$a = \frac{F_{spring}}{m} = \frac{-16.9 N}{60 kg} = -0.28 m/s^2$$

- c.) *The mass is* released. What is the amplitude of the periodic motion? Amplitude is the maximum distance from equilibrium; since it was initially displaced 0.13 m, that will be the amplitude of its vibration.
- d.) What is the frequency of the motion?

$$\omega = \sqrt{k/m} = \sqrt{\frac{130\frac{N}{m}}{60 \ kg}} = 1.47 \ \text{rad/sec} \qquad \Longrightarrow \qquad v = \frac{\omega}{2\pi} = \frac{1.47 \ rad/sec}{2\pi} = 0.23 \ Hz$$

# A slíghtly more complex one...(13.31)

When a 2 kg mass is attached to a spring with a spring constant of 5 N/m is elongated a distance 3 meters from its equilibrium position and is released at t=0:



a.) What is the force 3.5 seconds after release?

b.) *Through how many cycles* does the body oscillate in 3.5 seconds?

*Hínt:* you need to find the function that will describe this motion...

See solution on class Website- or notes from class

More with the phase shift...

Same problem as previous slide except this time you are told that at t = 0, the mass is at  $\frac{3}{4}$  A moving away from equilibrium. What is the equation of motion?

We still know the amplitude and angular frequency, so we can write:  $x(t) = 3\sin(1.58t + \phi)$ 

*Plugging* the information we know into our equation (i.e., what's happening at t = 0):

x(t = 0) =  $\frac{3}{4}A = 0.75(3) = 2.25$  m, so we can write: 2.25 =  $3\sin(1.58(0) + \phi)$ 0.75 =  $\sin \phi$  $\phi = \sin^{-1}(.75) = .848$  rad

What does this mean?

We want to shift our t = 0 axis 0.848 rad to the right, so that the initial x value at t = 0 will be (3/4)A meters.



Another one...

What if at t = 0 the mass is at  $\frac{3}{4}$  A moving towards equilibrium?

*The math* will end up being the same, as you're still setting  $x = \frac{3}{4}$  A on the lefthand side. However, you can't just blithely put +0.848 rad for your phase shift! How so?

*Looking at* a graph, there are <u>two</u> locations per cycle where the mass is at  $\frac{3}{4}$  A – one moving away from and one moving towards equilibrium. We want the second one – so the sketch comes in *really* handy here:

From the sketch, we see we want the bigger phase shift  $(\phi_2)$ .

As half a cycle is  $\pi$  radians, and a sine wave is symmetrical, we find  $\phi_2$  to be  $\pi - \phi_1$ , so

 $\phi_2 = \pi - 0.848 = 2.29.$  and

 $x(t) = 3\sin(1.58t + 2.29)$ 



And lastly...

What if it's at  $-\frac{3}{4}A$  and moving away from equilibrium at t = 0?

Same general procedure: set that amplitude equal to the x at t = 0 and solve the equation for the phase shift. You'll get a negative phase shift, and sketching it out will show that we want not the -0.848 rad directly from the calculator but, instead, the bigger shift ( $-\pi + 0.848$ ) or ( $\pi + 0.848$ ).



*Moral of the story*: <u>sketch</u> the wave and <u>think</u> about what your calculator is giving you, then decide what to do about the phase shift.

#### Some interesting points...

Note 1:

- The period T of oscillation of a spring-mass system is constant no matter what the amplitude! (remember,  $\omega = \sqrt{k/m}$  doesn't have an A in it...)
- This is because the greater the amplitude, the greater the max restoring force (F = -kx = -kA) which also means a greater acceleration.
- *The bigger amplitude* means the mass has to travel more distance to get to equilibrium, but it accelerates more to do so, which evens out to keep the period the same!
- Note 2:
  - These same ideas work for a pendulum under certain conditions!
  - As long as the initial angle of displacement is small (<~20°), a pendulum will oscillate in Simple Harmonic Motion (smh).</li>

#### Pendulum

 $\mathcal{D}oes \ a \ simple \ pendulum \ fit \ our \ model?$ 

*Consider* the simple pendulum shown to the right. What is its period of motion?

*Strategy:* If we can show that this system's N.S.L. expression conforms to *simple harmonic motion*, we have it.

As the motion is rotational, we need to sum torques about the pivot point. Torque due to *tension* is zero. Noting that *r-perpendicular* for gravity is  $Lsin\theta$ , we can write:

$$\begin{aligned} \sum \tau_{\text{pin}} &: \\ &-(mg)(L\sin\theta) = I_{\text{piin}}\alpha \\ &= (mL^2)\frac{d^2\theta}{dt^2} \\ &\Rightarrow \quad \frac{d^2\theta}{dt^2} + \left(\frac{g}{L}\right)\sin\theta = 0 \end{aligned}$$



#### Pendulum

That form isn't quite right....<u>but</u> if we make a small angle approximation, (that  $\theta \ll$ ) then  $sin\theta \approx \theta$  and:

*This looks like* simple harmonic motion! Remember, we said anything in the form "acceleration + (constant)(position) = 0" is SHM, and the (constant) =  $\omega^{1/2}$ 

Apparently, for a pendulum, we can write:

e: 
$$\omega = \left(\frac{g}{L}\right)^{\frac{1}{2}}$$

This also means that since  $\omega = 2\pi v$  and  $v = \frac{1}{T}$ , then  $T = 2\pi \sqrt{\frac{L}{g}}$ 

**NOTE that** these relationships are true for any pendulum with a small angle amplitude!

Sample test question (from Fletch's textbook)

**9.25)** A 3 kg block is attached to a vertical spring. The spring and mass are allowed to gently elongate until they reach equilibrium a distance .7 meters below their initial position. Once at equilibrium, the system is displaced an additional .4 meters. A stopwatch is then used to track the position of the mass as a function of time. The clock is started when the mass is at y = -.15 meters (relative to equilibrium) moving *away from* equilibrium. Knowing all this, what is:

- a.) The spring constant?
- **b.)** The oscillation's angular frequency?
- c.) The oscillation's amplitude?
- d.) The oscillation's *frequency*?
- e.) The period?
- f.) The energy of the system?
- g.) The maximum velocity of the mass?
- h.) The *position* when at the maximum velocity?
- i.) The maximum acceleration of the mass?
- j.) The position when at the maximum acceleration?

**k.)** A general *algebraic expression* for the position of the mass as a function of time?

### Answers to previous slide

- (a) 42 N/m
- (b) 3.74 rad/sec
- (c) 0.4 m
- (d) .595 Hz
- (e) 1.68 sec
- (f) 3.36 J
- (g) 1.50 m/s
- (h) x = 0.
- (i)  $a = +/- 5.6 \text{ m/s}^2$
- (j) x = +/-A
- (k)  $y(t) = 0.4\sin(3.74t-2.76)$  or  $y(t) = 0.4\cos(3.74t+1.96)$

Problem 13.42

For the sine wave shown, determine:

a.) amplitude?

b.) period?

c.) angular frequency?

d.) maximum speed?

e.) maximum acceleration?

f.) position as a function of time relationship using a sine function vs. a cosine function?



# Answers to previous slide

- (a) 2 cm
- (b) 4 sec
- (c) 1.57 rad/sec
- (d) 3.14 cm/s or 0.0314 m/s
- (e)  $4.93 \text{ cm/s}^2$  or  $0.0493 \text{ m/s}^2$
- (f)  $x(t) = (2 \text{ cm})\sin(1.57t)$  or  $x(t) = (2 \text{ cm})\cos(1.57t+1.47)$